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Abstract
The dielectric spectroscopy of perovskite Ba(Ti0.675Zr0.325)O3 (BTZ325) relaxor
ceramics is performed in a wide frequency range of 10−2–106 Hz. In contrast
to other known relaxors, where the dipole dynamics is subject to non-Arrhenius
slowing-down and freezing upon cooling so that the cubic ergodic relaxor phase
transforms into a cluster dipolar-glass phase or a ferroelectric phase, none of
these transformations are observed in BTZ325. In the course of cooling from the
ergodic relaxor phase the characteristic time and the spectral width of the main
relaxation process first increase rapidly in a Vogel–Fulcher manner, but then
become almost temperature independent below the temperature of permittivity
maximum, indicating the onset of the state which we call quasi-ferroelectric.
The properties and the origin of this state are discussed.

Relaxor ferroelectrics (or relaxors) are crystalline materials widely studied in recent years due
to their remarkable properties and wide prospects of practical applications (see [1] and [2]
for a review). The determinative property of relaxors is the extraordinary large, diffuse and
frequency-dispersive maximum in the temperature (T ) dependence of dielectric permittivity
(ε). This maximum is believed to originate from the polarization of nanosize regions inside
which permanent ferroelectric-like order exists, i.e. the polar nanoregions (PNRs). The
relaxor behaviour has been studied elaborately in lead-containing crystals with perovskite-
type structure, such as Pb(Mg1/3Nb2/3)O3 (PMN) and (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3

(PMN–PT). The evolution of the high-temperature cubic ergodic relaxor phase upon cooling
is known to occur in one of two ways. In some relaxors (e.g. in PMN–PT with large x) the
ergodic phase transforms into a ferroelectric (and thus nonergodic) phase at a Curie temperature
which is usually several degrees below the temperature of the permittivity maximum, Tm.
At low temperatures the crystal reveals all major characteristics of the ferroelectric (FE)
phase, including polar (in most cases rhombohedral) symmetry and pronounced FE properties
(polarization hysteresis loops, piezo- and pyroelectric effects, etc). In some others, the
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canonical relaxors (e.g. PMN), the structure remains macroscopically cubic (nonpolar) but
a glassy nonergodic relaxor phase appears. The ergodicity becomes broken because of the
dipolar interactions, which lead to a cluster glass state where the dipole moments of PNRs are
frozen in random directions. The FE phase can typically appear in the temperature range of the
nonergodic relaxor phase after application of a strong enough external electric field.

Freezing of dipole dynamics can be effectively probed by means of dielectric spectroscopy.
In the canonical relaxors the characteristic relaxation time (τ ) of the main (so-called
conventional relaxor) relaxation process contributing to the ε(T ) peak upon cooling tends to
infinity at a non-zero temperature Tf, following the Vogel–Fulcher (VF) law,

τ = τ0 exp[Eτ /(T − Tf)], (1)

where τ0 and Eτ are the parameters and Tf (which is significantly lower than Tm) can be
considered as the freezing temperature [3–5].

In the present work we discover a new type of relaxor behaviour. In the perovskite
Ba(Ti0.675Zr0.325)O3 (BTZ325) solid solution which was shown to be relaxor with a cubic
structure (space group Pm3̄m) down to low temperatures (similar to canonical relaxors) [6–9],
the dielectric dipole dynamics is, however, found not to be subject to any critical slowing-down
and glassy freezing. This implies that in contrast to other known relaxors the low-temperature
state in BTZ325 is neither dipolar glass nor FE. Nevertheless, such a state is nonergodic, and it
can be considered as a quasi-ferroelectric state.

The relative dielectric permittivity (ε∗ = ε′ − iε′′) of the BTZ325 ceramics with sputtered
gold electrodes was measured as a function of frequency ( f ) and temperature upon slow
cooling using an impedance analyser (Novocontrol turnkey dielectric spectrometer Concept
20). Details on specimen preparation and measurement technique were given in [9].

The diffuse peaks in the temperature dependences of ε′ and ε′′ found in BTZ325 (see
figure 1) are characteristic of relaxors. As shown previously [8, 9], both the real and imaginary
peak temperatures follow the VF relation f = fm exp[Ea/(Tm − TVF)]. However, it should
be underlined that this fact does not necessarily imply the freezing of the dielectric spectrum,
i.e. the divergence of τ according to equation (1). To confirm equation (1) in classical relaxors,
the dielectric spectra have been properly analysed [3–5]. In the present work we apply to
BTZ325 ceramics the method of analysis developed in [5].

Figure 2 shows the frequency dependences of ε∗ at selected temperatures around Tm. At
relatively high T the spectra are qualitatively the same as we observed at T > Tm in other
relaxors PMN [5] and PMNT [10–12] in the same frequency range, i.e. two relaxation processes
exist. The so-called universal relaxor (UR) process gives the dominating contribution to the loss
at low frequencies while the conventional relaxor (CR) relaxation becomes more important at
high f . Accordingly, we use the sum of the two terms to describe analytically the frequency
dispersion of permittivity:

ε∗( f ) = χ∗
U( f ) + χ∗

R( f ) + ε∞, (2)

where the complex susceptibilities χ∗
U and χ∗

R refer to the UR and CR polarizations,
respectively, and the third, frequency-independent term represents the contribution arising from
electronic and phonon polarization and (if any) from other high-frequency relaxation processes
with losses negligible at the measurement frequency. The nonlinear least-square fitting of the
experimental data to equation (2) is carried out at several fixed temperatures in the same way
as described in [5]. Very good fitting can be obtained when the same dispersion formulae are
used as in the case of PMN and PMNT, namely the Curie–von Schweidler (fractional power)
law,

χ ′
U( f ) = χU1 f n−1 = tan(nπ/2)χ ′′

U( f ), (3)
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Figure 1. Temperature dependences of the real and imaginary parts of permittivity in
Ba(Ti0.675Zr0.325)O3 ceramics.

for the UR relaxation, and the Kohlrausch–Williams–Watts (KWW) law for the CR relaxation.
The CR susceptibility χ∗

R is calculated as the Fourier transform of the time derivative of the
KWW (stretched exponential) function, exp[−(t/τKWW)β] (see [5] for details). The parameters
χU1, n, χR0 ≡ χ ′

R ( f = 0), τKWW, β and ε∞ are considered the adjustable ones. The fitting
results for selected temperatures are shown in figure 2.

Note that although fitting is adequate at all frequencies and temperatures studied, it yields
negative values of ε∞. This means that the experimental data significantly deviate from the
KWW trend at frequencies higher than the highest measurement frequency, and as a result the
dielectric strength (=χR0) of CR relaxation appears to be smaller than the value prescribed by
the KWW formula. One can expect this effect at relatively small values of τ and β. Indeed,
the stretched exponent diverges at t → 0 and thus is unable to describe the relaxation at very
short times, or in the frequency domain at frequencies significantly higher than the attempt
frequency of dipole motion (which is of the order of the phonon frequency, ∼1013 Hz in our
case). Consequently, the KWW ε′′( f ) peak should necessarily be cut off at f ∼ 1013 Hz. If
fKWW ≡ (2πτKWW)−1 is close to this cutting frequency and β is small, i.e. the ε′′( f ) peak
is wide (as in the case of BTZ), the area under the curve becomes significantly reduced. On
the other hand, according to the Kramers–Kronig relation, this area determines the value of
dielectric strength, which is therefore also reduced.

The temperature dependences of the relaxation parameters obtained from the fitting are
presented in figures 3 and 4. The first striking difference between BTZ325 and the prototypical
relaxor PMN is the behaviour of the parameters of the CR (i.e. the main) dielectric contribution.

3
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Figure 2. Frequency dependences of the real and imaginary parts of permittivity in
Ba(Ti0.675Zr0.325)O3 at selected temperatures. Experimental data are shown by dots; solid lines
represent the fitting to equation (2).

In PMN, τKWW [5] as well as the longest relaxation time in the CR spectrum [3, 4] and the
most probable relaxation time [13] follow the VF relation (1) in the range from 10−12 s up to
the largest value of 103 s attainable in experiment, signalling an effective freezing of the CR
dipole subsystem at Tf �= 0 into a glassy nonergodic state. In BTZ325 (see figure 3(a)), after
an interval of sharp increase, τKWW grows more slowly on cooling and then (below 140 K)

4
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Figure 3. Temperature dependences of (a)
CR relaxation parameters τKWW (dots) and τmp

(triangles), and (b) CR relaxation parameter
β (triangles) and UR exponent n (dots) in
Ba(Ti0.675Zr0.325)O3. Solid lines are the fits
to equations (4) and (5) with the parameters
Tβ = 150 ± 6 K, Tn = 131 ± 5 K, β0 =
0.141±0.012, n0 = 1.01±0.02, Eβ = 12±5 K
and En = 9 ± 2 K. The dashed line represents
the trend of equation (1) with τ ≡ τKWW and
the parameters Tf = Tβ , τ0 = 8 × 10−14 s and
Eτ = 360 K.

becomes saturated. Though the behaviour is definitely non-Arrhenius at all temperatures, it is
not possible to check reliably whether or not the VF relation (1) holds in the high-temperature
range (because the experimentally available data interval is too narrow). However, if the value
of Tf is fixed at ∼Tβ (the VF temperature defined in equation (4), see below for details) the
high-temperature data can be fitted to equation (1) (dashed line in figure 3(a)) with the values
of other parameters being reasonable for relaxors.

The deviation from the VF law and the temperature independence of τKWW at low
temperatures suggest that the CR relaxation spectrum does not freeze. It can also be understood
in a simpler way without using the sophisticated fitting procedure. The CR and UR losses are
relatively separated in frequency at all temperatures (see figure 2(b)) so that the most probable
relaxation time (τmp), i.e. the standard characteristic of relaxation, can be easily determined
for the CR contribution from the position of the ε′′( f ) maximum. At high temperatures this
maximum is located above the largest measurement frequency, but moves down on cooling and
can be clearly seen at T < 150 K in the range of 104–106 Hz. As one can see in figure 3(a),

5
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Figure 4. Temperature dependences of the permittivity ε′ measured in Ba(Ti0.675Zr0.325)O3 at
10−2 and 105 Hz (crosses) and the static CR permittivity, εR0 = χR0 + ε∞ (filled circles), and
UR susceptibility, χU1 ≡ χ ′

U1 (1 Hz) (open circles), derived from fitting. Solid lines are the fits to
equations (6) and (7) with the parameters TRA = 194 K, εRA = 12×103, δR = 41.8 K, T0 = 180 K
and CU = 8.2 × 105 K2. The inset shows 1/χU1 as a function of (T − T0)

2.

the values of τmp are larger than τKWW (as they should be in the case of KWW relaxation) and
follow a similar temperature dependence without any sign of freezing.

The situation is perhaps possible (though never observed experimentally) in which τKWW

is weakly temperature dependent, but the spectrum anomalously broadens on cooling so that
the longest relaxation time (τmax) diverges at T �= 0; i.e., only part of the spectrum related
to certain relaxation mechanism freezes. The values of τmax in classical relaxors (including
PMN) were determined from the onset of frequency dispersion on ε′(T ) curves using the
condition that τmax = 1/(2π f ) when ε′( f, T ) deviates from its low-frequency limit [4]. In
fact, only the CR relaxation mechanism was analysed in that work, which was understandable
because of the negligible value of χ ′

U as compared to the total measured ε′, especially at
high frequencies (frequencies up to 200 MHz were used). Unfortunately, this method works
only at comparatively high temperatures, namely higher than Tm for the lowest measurement
frequency (190 K in our case). Therefore, it is impossible to test it for BTZ325 in the most
interesting low-temperature range, where τmax is expected to be non-divergent. As for the
temperatures above 190 K, we found, using this method, that τmax increases upon cooling in a
VF-like manner (i.e. similar to τKWW) but the VF parameters could not be reliably determined
due to the undesirable χ ′

U contribution, which appears to be significantly higher than in PMN
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(compare figure 4 for BTZ and figure 1 in [5] for PMN), making it impossible to measure τmax

precisely.
Alternatively, τmax can be estimated if τKWW and β are known. The KWW parameter

β determines the width of the relaxation spectrum: it is equal to unity in the case of single
relaxation time (Debye relaxation) and becomes smaller when the spectrum expands. As shown
in figure 3(b), β in BTZ, and the UR relaxation parameter n, first decrease with decreasing T
according to the VF-type relations,

β = β0 exp[−Eβ/(T − Tβ)], (4)

n = n0 exp[−En/(T − Tn)], (5)

(this behaviour was also observed in PMN, see [5]). If equations (4) and (5) persisted down
to the lowest temperatures, they would indicate a singular broadening of the CR spectrum at
Tβ and a freezing of the UR spectrum at Tn [5, 11], respectively. However, below ∼170 K
both relations are violated and the parameters even increase upon further cooling. At high
temperatures equation (5) becomes no longer valid either and n decreases with increasing T
from 0.905 at 213 K to 0.84 at 270 K and then remains unchanged (not shown in figure 3). The
observed low-temperature behaviour of β means that τmax for the CR dielectric contribution
does not decrease upon cooling below 140 K and the whole CR relaxation spectrum remains
unfrozen.

The possibility found in the present work of a freezing-free relaxation accompanied by
the fulfilment of the VF law for Tm was theoretically predicted [14], but it has never been
experimentally verified in canonical relaxors. The conditions necessary for such a kind of
behaviour are a maximum in the temperature dependence of static permittivity and a gradual
broadening of the dielectric spectrum upon cooling. Both these conditions are satisfied for the
CR dielectric contribution of BTZ325 in the temperature range around Tm.

The static CR contribution, εR0 = χR0 + ε∞, is compared with the experimentally
determined ε′ in figure 4. The εR0(T ) curve is fitted to the Lorenz-type relation

εRA/εR0 = 1 + (T − TRA)2/(2δ2
R). (6)

At T > Tm and comparatively high frequencies, where εR0
∼= ε′, this relation is known to be

characteristic of relaxors [5, 15] and confirmed also in BTZ325 [9]. At T ∼= Tm and below,
the temperature behaviour of εR0 in relaxors is not well studied, because the deviation of the
measured ε′(T ) from the εR0(T ) trend takes place due to large CR dispersion. Therefore, some
efforts, e.g. fitting of dielectric spectra in the same way as performed in the present work, are
required to determine εR0(T ). As one can see in figure 4, εR0(T ) in BTZ325 follows equation (6)
not only at T > Tm but also at T ∼= Tm. At lower temperatures a small deviation is observed.

The temperature dependences of the real and imaginary parts of UR contribution at all
frequencies show a quadratic critical behaviour following the relation

1/χU = (T − T0)
2/CU, (7)

where T0 and CU are the frequency-dependent parameters. This is presented in figure 4 for a
selected frequency of 1 Hz. The critical behaviour of the susceptibility is indicative of an FE
phase transition and in PMN–PT, where equation (7) also holds for the UR susceptibility in the
ergodic relaxor phase [10, 12], the low-temperature phase is indeed FE. However, BTZ325 is
not ferroelectric at low T .

The BTZ325 ceramics studied in this work possess the basic characteristics of the relaxors.
The peak of ε′(T ) is very large and diffuse, with a strong dispersion on the low-temperature
side and the VF shift of Tm. Below Tm, the symmetry of the structure remains cubic. This is
confirmed by x-ray diffraction data [6] and by the fact that Raman spectra do not show any
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change in width or frequency of the lines upon cooling through Tm and below, indicating the
absence of a structural phase transition [16]. Besides, the existence of PNRs at T 	 Tm was
evidenced by Raman spectroscopy [16], heat capacity measurements (anomaly at T 	 Tm) [17]
and dielectric study (strong nonlinearity and deviation from the Curie–Weiss law) [7, 9]. In
canonical relaxors, flipping of the PNRs dipole moments is believed to freeze out, giving rise
to the freezing of the CR dielectric response (divergence of τKWW and vanishing of β) so that
the KWW susceptibility does not contribute to the measured permittivity at T < Tf.3 However,
our analysis clearly demonstrates that the CR dielectric relaxation dynamics in BTZ325 remains
active down to low T . The small, nearly T -independent (below 140 K) value of τKWW

∼= 10−6 s
and the increasing value of β on cooling imply that the dipoles have enough time to reach
equilibrium during the period of a typical experiment and thus the CR dipole subsystem shows
the behaviour characteristic of an ergodic state. Note that in the PMN relaxor crystals, freezing
(non-ergodicity) has been found not only for the CR dipole subsystem but also for the UR
subsystem based on the fact that n → 0 according to equation (5), when T → Tf. In BTZ325,
equation (5) is not valid at low temperature, thus there is no freezing of the dipoles responsible
for the UR relaxation either. However, some other experiments hint at the non-ergodicity of
the low-T state in Zr-rich BTZ. In particular, the pyroelectric current in poled samples and the
FE-type hysteresis loops are observed [7, 16], which implies the possibility for the material to
exist in different long-living (polar) states at the same temperature, i.e. non-ergodicity.

To interpret the results we suggest that, similar to the PMN and PMN–PT relaxors [5, 18],
the CR and UR relaxations in BTZ originate from the flipping of the PNR dipole moments
between the allowed directions and from the reorientations of the dipole moments of some
individual unit cells inside PNRs, respectively. The size and number of PNRs in relaxors are
known to increase upon cooling starting from a temperature much higher than Tm [2, 19];
therefore, the static CR susceptibility χR0, which is determined by the number and (average)
dipole moment of PNRs, also increases. Accordingly, the increase of εR0 = χR0 + ε∞ is
observed (see figure 4). The characteristic time of PNR dipolar relaxation is expected to be
dependent on their size, the (frustrated) interactions among them and the local random electric
and elastic fields present due to quenched disorder in the crystal structure. In PMN such a
kind of dependence leads to anomalous broadening of the relaxation spectrum, deviation from
the Arrhenius behaviour and VF freezing of the dipole dynamics (τKWW → ∞, β → 0
and n → 0 when T → Tf) so that the subsystem of PNR dipole moments forms the
glassy state (according to the majority of existing theoretical models, e.g. spherical random
bond-random field model [20]). In BTZ325, as we have experimentally shown above, the
deviation from the Arrhenius law also takes place and the behaviour at T ∼ Tm and at higher
temperatures resembles the behaviour in the classical relaxors, suggesting a significant role of
PNR correlations. However, the VF freezing does not happen at low temperatures, possibly for
the following reasons. After the gradual growth upon cooling, the size of some PNRs increases
abruptly4. This may be due to the merging of neighbouring PNRs into larger ones or/and due
to the thermally activated critical nucleation and growth of the regions of ferroelectric phase,
as described in the kinetic model of phase transitions in disordered crystals [21]. Since the
activation energy of the PNR dipole moment flipping is roughly proportional to the volume of
PNR [1] and the relaxation time depends on the energy exponentially, at temperatures close
to Tf even a comparatively small growth of PNR can lead to a huge increase in the relaxation
time. Therefore, the dipole moments of those PNRs whose size has increased abruptly can no

3 The dielectric response of canonical relaxors at T < Tf is dominated by the relaxation of PNR boundaries, which is
characterized by frequency-independent loss [13].
4 In principle, the abrupt increase of PNR size in a certain temperature interval is in agreement with a number of
experiments and seems to be characteristic of relaxors, see e.g. [19].
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longer be reoriented by thermal motion and thus do not contribute to the dielectric relaxation5.
This mechanism leads to a decrease in the concentration of dynamic PNRs and thereby to the
decrease of χR0. At T < TRA this effect overwhelms the effects of emergence and gradual
growth of PNRs and a maximum in the χR0(T ) curve appears (figure 4). Decreasing the
concentration of dynamic PNRs should also lead to a decrease of the interactions among them
and thus to decreasing τKWW and increasing β (deviation from VF laws at T < TRA). Besides,
abrupt growth is expected for the largest PNRs [21], i.e. those having the largest relaxation
time. Their exclusion from the ensemble of dynamic PNRs additionally promotes the decrease
in τKWW. As the UR contribution is also related to PNRs, the decrease of the dynamic PNR
number leads to a χ ′

U (T ) maximum and to an increase of n on cooling. In this way, the T
dependences of the relaxation parameters are explained.

This explanation implies that the type of nonergodicity in BTZ325 is different from that
in canonical relaxors (e.g. PMN), where the nonergodicity is related to the VF freezing due
to frustrated dipolar interactions and formation of a cluster dipolar-glass state. In BTZ two
interpenetrating sets of PNRs are suggested to exist in the low-temperature state, i.e. static
(large) PNRs and dynamic (small) PNRs. The interactions among dynamic PNRs are weak and
they behave like ergodic species. The nonergodicity is associated with the incapability of the
static PNRs to be thermally reoriented because of their comparatively large size. Application of
a strong enough external electric field (poling) can bring them to different configurations with
close energies (similar to normal FE domains), i.e. the state is nonergodic. On the other hand,
the macroscopic symmetry of the non-poled crystal remains cubic, i.e. the state is not FE. It
can be called a quasi-ferroelectric state.

We note that the existence of a comparatively large number of static polar regions at
T ∼ Tm is also confirmed by the fact that significant piezoresponse is observed in poled
BTZ at temperatures several dozens of degrees higher than Tm [22]. In poled PMN the
piezoresponse vanishes on heating at T 
 Tm [23]. Presumably, the formation of static
(large) PNRs in PMN is hindered by local random electric fields caused by the disordered
Mg2+ and Nb5+ ions. In BTZ these fields should be much smaller because the valences of the
disordered ions Ti4+ and Zr4+ are the same. However, the PNRs in BTZ are still unable to
become macroscopic FE domains. Thus, some other mechanism restricting the PNR growth
exists. Furthermore, this mechanism works even in the presence of strong external electric field
(according to reference [6] the symmetry of BTZ, determined from x-ray diffraction, remains
cubic after poling). It can be related [6] to the existence of the nanometer-size Zr-rich regions
which was suggested based on the high-pressure Raman study [24] and confirmed by EXAFS
experiments [25]. Spontaneous polarization in such a kind of region is impossible (pure BaZrO3

is not FE), thus PNRs located beside them cannot grow. Therefore, the quasi-ferroelectric state
in BTZ325 can be considered as a mixture of the randomly distributed static and dynamic polar
nanoregions and the non-polar Zr-rich nanoregions.

Our conclusion on the absence of glassy freezing in BTZ is in agreement with our
preliminary dielectric investigations [9], as well as with the recent measurements of the thermal
properties of this material [26]. Freezing should lead to an anomalous decrease of entropy and,
consequently, to an anomaly in the temperature dependence of heat capacity. Such a kind of
anomaly was theoretically derived [27] in the framework of the random bond–random field
model for spherical glasses [20] and was indeed observed in PMN [27]. It was experimentally
found [27] that in PMN the entropy related to the thermal motion of PNRs vanishes on cooling

5 To illustrate this process, consider two dynamic PNRs having the activation energy of 360 K = Eτ . At the
temperature of 165 K < Tm their relaxation time can be estimated from equation (1) with the parameters listed in
the caption of figure 3 and equals 2 × 10−3 s. After merging of these two PNRs, the activation energy of the new PNR
is equal to 2Eτ and the relaxation time to 5 × 107 s, i.e. it is effectively frozen.

9
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at the same temperature Tf, which is derived as the freezing temperature from the dielectric
relaxation experiments [5]. However, in BTZ35 the anomaly of the heat capacity around Tm is
not observed [26], which implies that freezing is absent (in [17] a very small anomaly, much
smaller than in PMN, was reported, which can be related to the change of dynamic PNR number
discussed above).

Concerning the relation between the structure and properties of the quasi-ferroelectric
phase, it is interesting to note that the Neumann’s principle is seemingly not satisfied here.
According to this principle, the point group of a crystal structure must be a subgroup of the
symmetry group of any macroscopic physical property [28]. As revealed in the x-ray diffraction
experiment (i.e. the conventional method for crystal symmetry determination), the symmetry
of BTZ with large Zr content does not change after poling and remains centric (m3m) [6]. The
Neumann’s principle prohibits piezo-, pyro- and ferroelectric properties in this case. However,
as mentioned above, these properties have been observed in experiments. The paradox can be
understood by taking into account nanoscale inhomogeneities of quasi-ferroelectric structure
in which the ferroelectric regions separated by non-polar Zr-rich regions are too small to be
detected from the profiles of the x-ray diffraction peaks.

This work was supported by the France–Canada Research Foundation and by the US Office of
Naval Research (No N00014-06-1-0166).
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